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A mathematical model can be served for the process of detail formation using the 
Hamilton-Ostrogradskii variation equation, which is written in the following form for the 
finite equilibrium state of an object [i] 

(1) 

Here, T is the Cauchy stress tensor; T N is the stress tensor on the surface ~ of the object 
with a unit normal N; V, K are the vectors for the acceleration and the force; 6U is the 
change in the displacement vector U; V is the vector Hamiltonian operator; V, ~ are the 
volume and the surface of the object in four-dimensional space (including the time T); and 
P is the density. The dots between the letters denote the scalar product of the tensor 
functions, and the dots above the letters represents the velocity. The capital letters 
pertain to functions which describe the finite state of the object. 

To solve the problem, the variation equation (i) is transformed to the metric of some 
intermediate state which is, in general, in nonequilibrium. The transformation is done on 
the assumption that the functions which characterize the finite state are expressed in 
terms of a sum of the corresponding functions of the intermediate state (these functions 
will be written with lower-case letters according to the above definitions), and their incre- 
ments are associated with the sign A. In addition, the transformation is facilitated by 
the condition for the conservation of mass and by the relation between the elementary 
surfaces of two configurations of a deformable object [2]. 

Hence, the transformation of the variation equation (i) leads to the following 

where 

2 o = At + (t + At)~; ~ = (r$~ + Iv. ) i - (+ + 1~u ) v. + (v.)2; 

I~u, I~u are the first and second invariants of the gradient of the displacement vector 
Au; and I is the unit tensor. 

The logarithmic Henke tensor [2] is used as a measure of the deformation 

h= �89 (, + vu+ uv + uV.Vu), (3) 

which can be put into the form of a sum of the elastic h e and plastic hpcomponents: h=he+ 
hp, which, because of the following equality 

d= hV= h~_h.w--w.h 

corresponds to the tensor for the deformation of the velocity d = d e + dp (d is the velocity 
deformation tensor; w is the spin to which it corresponds; and h V is the derivative of h 
with respect to Yaumann-Noll). 

Relations can be written for the energy pair t - h (t - d) which arises from the 
associated law of plastic flow [3] 

-- = h ' _  ~ - P I p ' r' 0, t', dp=vNa. (4) I~=~-Kp I~, hp e--2~t P 
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Here, 

t ~ , . 
. f : - ~ a : a - - x < O ;  a :  t - - g h p ,  

(i  for plast ic  deformation, 
=~.0 for elastic deformation;- 

K, p are elastic constants; ~ = K(hp) is the fluidity limit; g = g(hp) is an experimentally 
determined coefficient which characterizes the quantity of residual micro-stresses; f is 
the surface of the loading; a is the tensor for active stresses; and the apostrophes denote 
the deviated components of the tensor. 

The formulation of the geometric (3) and physical (4) relations in the variation equa- 
tion (2) allows one to transform it into an equation with a single unknown - the displacement 
vector u. This equation can be put in the form 

.['t:V6u+P(;--k"~u]dv--;tv'6ude=; Vu':(')m:v6udv@~(VU:(4)m'v) "6udm, (5) 

where 

: 2 .) (')c, + (.% (.)%) (.,%) 

@M a --I ) ] ) /(~)C t (4)C ~ aa; : 

(~)C i (i = i, 2, 3) are the isotropic tensors of the fourth rank [2] which are functions only 
of the base vectors of the coordinate system. 

Equation (5) is written in a form which is conveniently solved by an iteration technique. 
If the configuration of the deformable object corresponds to its equilibrium state, then the 
right-hand side of Eq. (5) goes to zero, and the solution of the problem is unknown. In the 
opposite case, the "discrepancy" of the solution allows one to determine the increment of 
the displacements over successive iterations and to correct the displacements, the configura- 
tion of the object, and other functions. For a converging process, the discrepancy (the 
right-hand side of the equation) goes to zero. 

An additional difficulty in solving the problem of the deformation of an object in space 
which is restricted by a rigid matrix involves the formation of an algorithm for the exit 
of the object at the surface of the matrix and for the continued passage of the object along 
this surface taking into account friction. 

The moment at which the boundary points of the object and the surface of the matrix 
intersect is given by the equation 

[~L, %, %).= 0 (6)  

i n  t h e  s p a c e  x k (k = 1, 2,  3) and i s  d e t e r m i n e d  o v e r  each  n - t h  s t e p  o f  l o a d i n g  from t h e  
associated solution of the equation for the vector r for the position of the node points of 
the object's boundary 

r(.) = r( ._  0 + u(n ) ( 7 )  

and of Eq. (6). 

If the boundary point of the object intersects the matrix or slides along its surface, 
then additional conditions regarding the displacements must be applied on the displacement of 
the node. In this case, reactive forces will act on the boundary of the object which support 
it on the surface of the matrix. The reaction is along the normal to the surface of the matrix, 
and the friction coefficient is determined as the force of friction (which is the corresponding 
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tangential stress ~) according to the Amonton-Kulon law or to other considerations ~4]~ 

The force which acts on the boundary points of the object due to the matrix along the 
tangent is in the same direction as the force of friction. In the first approximation, 
this force is determined from the results of solving the problem when there are no 
displacements of the boundary points. Hence, one can determine the tangential contact stress 
t~o One then has two situations 

~ < ~ and t ~T. 

In the first case, which corresponds to "adhesion" of the points of the object to the 
surface of the matrix, the displacements of the object's boundary points are equal to zero, 
and in the second case, one considers the frictional forces determined by the quantity ~, 
and the displacements in the direction which is tangent to the surface of the matrix are 
found from the solution of the problem. 

Writing Eq. (5) in the symbols of direct tensor calculus facilitates reducing it to 
matrix form, which corresponds to the method of finite elements. One must choose an iso- 
parametric finite element for which the fundamental displacements that describe the 
configuration of the object and the displacement field are approximated by single functions. 
For formalization of the transfer from the tensor equation (5) to a description in coordinate- 
matrix form, the summation over all nodes of the finite element model for a deformable object 
is done according to the indices in the parentheses, and the summation over the coordinates 
is done using indices without parentheses. 

One can use the above rule to put the terms of Eq. (5) in the form of a sum. For 
example, 

( J )  ' 

Here, W~. is the nodal displacement of the j-th node in the direction xq; ~(i) is an 
J) 

approximation function for the i-th node; m ks are the physical components of the tensor (4)m 
n~ 

in the indicated coordinate system; and Vk is an operator related to the covariant deriva- 
tive of the tensor. The other terms in expression (5) are given in a similar manner. 

If one sets the factor equal to zero when the variations are independent, one can reduce 
the variation equation (5) to a system of matrix equations, which corresponds to the method 
of finite elements. 

One uses a stepwise method of loading with an internal iteration cycle for solving the 
problem. Hence, the solution is accurate because, first, the iteraction process converges 
at the loading step and, second, the quantity of the step is elected by using a computer. 
The latter is necessary only when using the differential theory of plasticity and when 
analyzing the behavior of the object when its boundary moves along the surface of the matrix, 
i.e., in situations where the accuracy of the calculations is a function only of the accuracy 
of tracing through loading. For free deformations of an object made of a nonlinearly elastic 
material, the accuracy of the calculations for converging iteration processes does not depend 
on the size of the loading step. 

It was found on a computer, using the law of plastic flow and assuming an error in the 
solution of no more than 1%, that the loading step, which is illustrated in Fig. i, must be 
selected so that the increment of the maximum displacements of the points of a deformable 
shell is no greater than 0.I of its thickness. The loading step was elected by extrapolating 
the curve for the dependence of the loading on the warping. 

The above algorithm was used to compose a program for a computer using the language 
PL/Io This program can be used to detail the technological processes for processing metals 
with static loading pressures and to determine hardness, rigidity, and stability. 

Some examples of solutions to the problem are given below which illustrates the potential 
of the program. A solution was obtained for deformation of axially symmetric shells. This 
was done because of the lack of machine time (for the stretching of the shell illustrated in 
Fig. i, five hours of machine time was consumed on an ES-1040 computer) and because of the 
lack of experimental data on the behavior of materials for complex loading. Loading functions 
were put into the computer which are described by the Mizes surface with translational and 
isotropic reinforcement. 
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For an analysis of the formation of a neck in a protonated circular sample with a length 
of s = 200 mm and a radius of r = i0 mm (Fig. 2), the dimensions of the finite elements in the 
radial direction, which are joined to the center of the sample at the surface, were reduced 
by 5% in comparison to the base dimension (r(0) = 9.5 mm). 

The finite element model for the fourth sample (taking into account symmetry) was formed 
by breaking the sample down into i0 equal layers along the axis and two layers along the 
radius. It was assumed that the sample was made of an ideal elastoplastic material with 
E = 2"i0 S MPa, tp = 220 MPa. 

The sample was loaded on its end face by a displacement of U along the axis. It is 
evident from Fig. 2 that the displacement of the surface points of the center layer of the 
sample in the radial direction V(0) increases beginning from some time (the neck grows), 
while the surface points which are distinct from the center cross-section V(s are not dis- 
played in the radial direction. In the imperfect region of the sample, one observes localiza- 
tion of the plastic deformations. When the force P attains its maxfmum value the sample 
loses stability during stretching. 

When solving the problem of the deformation of a shell with a complex form (Fig. 3) made 
of soft steel with a thickness of 0.5 mm and dimensions of ~ = 22 ~ , R z = 49 mm, R 2 = 52 mm, 
R s = 67 mm, r = l mm, HI = 21 mm, H z = 15 mm, one must choose an angle ~ for one of the 
sections of the shell such that one achieves buckling when the shell is compressed by" 
a specific amount. The diagram for the deformation of the material was put into the computer 
on a pointwise basis and was then approximated by spline functions of the third order. 
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TABLE i 

Number of I 
position top, MPa 

t 0,5 
2 i,33 
3 * 2,225 

V ,  IIlln 

0,6 
2,55. 
5,90 

f 

Number of Numberol 
steps positior 

iO0 4 
200 5 
300 l 6 

10p, MPa 

2,75 

3,5 
6,6 

"V, mm 

9,25 
11,25 
ti ,35 

Number of 
steps 

36,q 
410 
460 

The determination of the critical force is obtained by assigning the displacement of a 
rigid ring U mounted on the opening of the shell. One then solves a series of problems for 
the shell using various ~ to derive a dependence for the force P(U). One can use approxima- 
tions to determine the force as a function of ~ (Fig. 4, ~ = 35, 32, 27, 22 ~ correspond to 
lines I-4). 

The intermediate (dashed lines) and final forms of the details are shown in Fig. 1 
which were obtained by extreme stretching of circular sheet stock made of the material AMG- 
6M. The quantity of loading steps and the values for the horizontal displacement as func- 
tions of the pressure p are shown in the table. The figures in the first column correspond 
to the positions of the shell indicated in Fig. i. The change in some of the functions 
which characterize the behavior of the shell in the process of formation is indicated in 
Figs. 5 and 6. The horizontal displacement of the edge of the detail V and the vertical 
displacement of the center of the shell U as functions of p are shown in Fig. 5, and a 
change in the thickness 6 and the spring back A along the length of the meridian of the 
shell r/R are shown in Fig. 6. According to the data from calculations and from the experi- 
ment, the shell was obtained after a single transition. The behavior of the change in the 
spring back has been confirmed experimentally. 

, 

2. 
3. 

LITERATURE CITED 

L. I. Sedov, Mechanics of Solid Media [in Russian], Nauka, Moscow (1976). 
A. I. Lur'e, Nonlinear Theory of Elasticity [in Russian], Nauka, Moscow (1980). 
N. N. Malinin, Applied Theory of Plasticity and Creep [in Russian], Mashinostroenie 
(1975). 
A. N. Levanov, V. L. Kolmogorov, S. P. Burkin et al., Contact Friction During the 
Processing of Metal with Pressure [in Russian], Metallurgiya, Moscow (1976). 

467 


